Author:
Alvarado Eduardo,Argudo Oscar,Rohmer Damien,Cani Marie-Paule,Pelechano Nuria
Abstract
AbstractHuman and animal presence in natural landscapes is initially revealed by the immediate impact of their locomotion, from footprints to crushed grass. In this work, we present an approach to model the effects of virtual characters on natural terrains, focusing on the impact of human locomotion. We introduce a lightweight solution to compute accurate foot placement on uneven ground and infer dynamic foot pressure from kinematic animation data and the mass of the character. A ground and vegetation model enables us to effectively simulate the local impact of locomotion on soft soils and plants over time, resulting in the formation of visible paths. As our results show, we can parameterize various soil materials and vegetation types validated with real-world data. Our method can be used to significantly increase the realism of populated natural landscapes and the sense of presence in virtual applications and games.
Funder
Max Planck Institute for Informatics
Publisher
Springer Science and Business Media LLC