A GAN-based approach toward architectural line drawing colorization prototyping

Author:

Sun Qian,Chen Yan,Tao Wenyuan,Jiang Han,Zhang Mu,Chen Kan,Erdt Marius

Abstract

AbstractLine drawing with colorization is a popular art format and tool for architectural illustration. The goal of this research is toward generating a high-quality and natural-looking colorization based on an architectural line drawing. This paper presents a new Generative Adversarial Network (GAN)-based method, named ArchGANs, including ArchColGAN and ArchShdGAN. ArchColGAN is a GAN-based line-feature-aware network for stylized colorization generation. ArchShdGAN is a lighting effects generation network, from which the building depiction in 3D can benefit. In particular, ArchColGAN is able to maintain the important line features and the correlation property of building parts as well as reduce the uneven colorization caused by sparse lines. Moreover, we proposed a color enhancement method to further improve ArchColGAN. Besides the single line drawing images, we also extend our method to handle line drawing image sequences and achieve rotation animation. Experiments and studies demonstrate the effectiveness and usefulness of our proposed method for colorization prototyping.

Funder

National Natural Science Foundation of China

National Research Foundation Singapore

Publisher

Springer Science and Business Media LLC

Subject

Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Software

Reference46 articles.

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, DG., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X.:TensorFlow: A system for large-scale machine learning. In: OSDI’16: Proceedings of the 12th USENIX symposium on operating systems design and implementation, pp 265–283(2016)

2. Bousseau, A., Kaplan, M., Thollot, J., Sillion, FX.: Interactive watercolor rendering with temporal coherence and abstraction. In: NPAR’06: Proceedings of the 2006 international symposium on non-photorealistic animation and rendering, pp 141–149(2006)

3. Byeon W, Wang Q, Kumar Srivastava R, Koumoutsakos P (2018) ContextVP: Fully context-aware video prediction. In: ECCV’18: Proceedings of the European conference on computer vision, pp 753–769

4. Cao, K., Liao, J., Yuan, L.: CariGANs: unpaired photo-to-caricature translation. ACM Trans. Graph. 37(6), 1–14 (2018)

5. Capcom (2008) Street fighter iv

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3