Shifting towards optimized healthy and sustainable Dutch diets: impact on protein quality

Author:

Heerschop Samantha N.ORCID,Kanellopoulos ArgyrisORCID,Biesbroek SanderORCID,van ‘t Veer PieterORCID

Abstract

Abstract Purpose To reduce the environmental impact of Western diets, a reduction of meat consumption and a substitution by plant-based protein sources is needed. This protein transition will affect the quantity and quality of dietary protein. Therefore, the aim of this study was to evaluate the protein adequacy of diets optimized for nutritional health and diet-related greenhouse gas emission (GHGE). Methods Data from 2150 adult participants of the Dutch National Food Consumption Survey were used, with diet assessed using two non-consecutive 24 h dietary recalls. Utilizable protein of current diets per day was based on meal composition and the Protein Digestibility-Corrected Amino Acid Score and was compared to protein requirements. Optimized diets were derived as linear combinations of current diets that minimized GHGE and maximized the Dutch Healthy Diet 2015 score, with/without constraints to keep dietary change within 33% of current consumption. Protein adequacy was evaluated in both current and optimized diets. Results In all age and gender strata, the healthiest diets had higher GHGE, the most sustainable diets had the lowest dietary quality, though higher than current diets, and protein adequacy remained sufficient. When limiting dietary change to 33% of current consumption, in the most promising trade-off diet GHGE was reduced by 12–16%. The current diet provided 1.4–2.2 times the required amount of utilizable protein. Conclusion These results suggest that a realistic aim for the next decade might be to reduce diet-related GHGE to 12–16% of the current levels without compromising protein adequacy and diet quality. To achieve global targets, upstream food system transformations are needed with subsequent dietary changes.

Funder

Nederlandse Zuivel Organisatie

Publisher

Springer Science and Business Media LLC

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3