Methods to prepare biosorbents and magnetic sorbents for water treatment: a review

Author:

Osman Ahmed I.ORCID,El-Monaem Eman M. Abd,Elgarahy Ahmed M.,Aniagor Chukwunonso O.,Hosny Mohamed,Farghali Mohamed,Rashad Emanne,Ejimofor Marcel I.,López-Maldonado Eduardo A.,Ihara Ikko,Yap Pow-Seng,Rooney David W.,Eltaweil Abdelazeem S.

Abstract

AbstractAccess to drinkable water is becoming more and more challenging due to worldwide pollution and the cost of water treatments. Water and wastewater treatment by adsorption on solid materials is usually cheap and effective in removing contaminants, yet classical adsorbents are not sustainable because they are derived from fossil fuels, and they can induce secondary pollution. Therefore, biological sorbents made of modern biomass are increasingly studied as promising alternatives. Indeed, such biosorbents utilize biological waste that would otherwise pollute water systems, and they promote the circular economy. Here we review biosorbents, magnetic sorbents, and other cost-effective sorbents with emphasis on preparation methods, adsorbents types, adsorption mechanisms, and regeneration of spent adsorbents. Biosorbents are prepared from a wide range of materials, including wood, bacteria, algae, herbaceous materials, agricultural waste, and animal waste. Commonly removed contaminants comprise dyes, heavy metals, radionuclides, pharmaceuticals, and personal care products. Preparation methods include coprecipitation, thermal decomposition, microwave irradiation, chemical reduction, micro-emulsion, and arc discharge. Adsorbents can be classified into activated carbon, biochar, lignocellulosic waste, clays, zeolites, peat, and humic soils. We detail adsorption isotherms and kinetics. Regeneration methods comprise thermal and chemical regeneration and supercritical fluid desorption. We also discuss exhausted adsorbent management and disposal. We found that agro-waste biosorbents can remove up to 68–100% of dyes, while wooden, herbaceous, bacterial, and marine-based biosorbents can remove up to 55–99% of heavy metals. Animal waste-based biosorbents can remove 1–99% of heavy metals. The average removal efficiency of modified biosorbents is around 90–95%, but some treatments, such as cross-linked beads, may negatively affect their efficiency.

Funder

SEUPB

Publisher

Springer Science and Business Media LLC

Subject

Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3