Factors modifying the structural configuration of oxyanions and organic acids adsorbed on iron (hydr)oxides in soils. A review

Author:

Han Junho,Kim Minhee,Ro Hee-MyongORCID

Abstract

AbstractOxyanions are ubiquitous in soils, organisms and the environment. Due to their unique chemical structure, oxyanions can be easily transferred into other systems. Carbonate (CO32−), nitrate (NO3), phosphate (PO43−), silicate (SiO42−) and sulfate (SO42−) are the major oxyanions in organisms and the soil environment, whereas arsenate (AsO43−), antimonate (SbO43−), borate (BO33−), selenate (SeO42−), and tellurate (TeO42−) are generally reported as toxic chemicals found at trace levels. Excessive oxyanions leached from soils into water have caused severe environmental problems. Here, we review the factors affecting the structural configuration of oxyanions and organic acids adsorbed on iron oxides and hydroxides. The configuration of oxyanions on iron (hydr)oxides is controlled by surface loading, pH, sample phase, competing ions and organic acids. Under conditions of low surface loading and low pH at the interface in the absence of competing ions, oxyanions with high affinity possibly form a complex with higher denticity. But an increase in pH decreases the number of sorption sites; thus, a transition from a tri- or bidentate complex to monodentate and outer-sphere complexes occurs.

Funder

Ministry of Education

Ministry of Science and ICT

Publisher

Springer Science and Business Media LLC

Subject

Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3