A flocculation tensor to monitor water quality using a deep learning model

Author:

Zhu Guocheng,Lin Jialin,Fang Haiquan,Yuan Fang,Li Xiaoshang,Yuan Cheng,Hursthouse Andrew S.ORCID

Abstract

AbstractThe increasing quantities of polluted waters are calling for advanced purification methods. Flocculation is an essential component of the water purification process, yet flocculation is commonly not optimal due to our poor understanding of the flocculation process. In particular, there is little knowledge on the mechanisms ruling the migration of pollutants during treatment. Here we have created the first tensor diagram, a mathematical framework for the flocculation process, analyzed its properties with a deep learning model, and developed a classification scheme for its relationship with pollutants. The tensor was constructed by combining pixel matrices from a variety of floc images, each with a particular flocculation period. Changing the factors used to make flocs images, such as coagulant dose and pH, resulted in tensors, which were used to generate matrices, that is the tensor diagram. Our deep learning algorithm employed a tensor diagram to identify pollution levels. Results show tensor map attributes with over 98% of sample images correctly classified. This approach offers potential to reduce the time delay of feedback from the flocculation process with deep learning categorization based on its clustering capabilities. The advantage of the tensor data from the flocculation process improves the efficiency and speed of response for commercial water treatment.

Funder

Hunan Provincial Science Foundation

Hunan Provincial Education Commission

General Water of China Co. Ltd.

Xiangtan Middle Ring Water Business Ltd.

Publisher

Springer Science and Business Media LLC

Subject

Environmental Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3