Nano-structured dynamic Schiff base cues as robust self-healing polymers for biomedical and tissue engineering applications: a review

Author:

Malik Umer Shahzad,Niazi Muhammad Bilal Khan,Jahan Zaib,Zafar Mazhar Iqbal,Vo Dai-Viet N.,Sher FarooqORCID

Abstract

AbstractPolymer materials are vulnerable to damages, failures, and degradations, making them economically unreliable. Self-healing polymers, on the other hand, are multifunctional materials with superior properties of autonomic recovery from physical damages. These materials are suitable for biomedical and tissue engineering in terms of cost and durability. Schiff base linkages-based polymer materials are one of the robust techniques owing to their simple self-healing mechanism. These are dynamic reversible covalent bonds, easy to fabricate at mild conditions, and can self-reintegrate after network disruption at physiological conditions making them distinguished. Here we review self-healing polymer materials based on Schiff base bonds. We discuss the Schiff base bond formation between polymeric networks, which explains the self-healing phenomenon. These bonds have induced 100% recovery in optimal cases.

Funder

Engineering and Physical Sciences Research Council

Higher Education Commission, Pakistan

Publisher

Springer Science and Business Media LLC

Subject

Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3