Recent advances in characterising irradiation damage in tungsten for fusion power

Author:

Das SuchandrimaORCID

Abstract

AbstractTungsten is the front-runner candidate for building the plasma-facing armour components for future fusion reactors. However, in-service irradiation by fusion-neutrons and helium will create lattice-defects in the material, compromising its properties and lifetime. Improving the component’s resilience to radiation damage and accurately predicting the lifetime of irradiated components is key for commercial feasibility of the reactor. For this purpose, understanding the creation and evolution of radiation damage is essential. This paper reviews recent advances in characterising radiation damage through experimental and modelling techniques. Tungsten-ion- and helium-ion-implantation are commonly used to mimic the damage created by neutron- and helium-irradiation respectively. Defects (> 1.5 nm) can be directly imaged using transmission electron microscopy while all defects (size-independent), may be indirectly probed by measuring lattice strains induced by them (using diffraction techniques; synchrotron X-rays or high-resolution electron-backscatter). Neutron-irradiation produces mainly ½〈111〉 prismatic loops. Loop-interaction and structural organisation evolves with changing implantation dose and temperature. Helium-irradiation, < 573 K, induces formation of small helium-vacancy clusters, which evolve into bubbles, blisters and “fuzz” structure with changing temperature and dose. Nano-indentation or micro-cantilever bending tests can be used to examine mechanical properties of ion-implanted layers. Both helium- and neutron-implantation defects induce increased hardening often followed by subsequent strain-softening and localised deformation. Such irradiation-induced alterations are detrimental to material ductility and long-term structural integrity of tungsten-based components. Development of physically-based material models that capture the physics of underlying irradiation-induced changes, inspire confidence of reliably using simulations to predict mechanical behaviour and in-service performance of irradiated engineering components in future.

Funder

Leverhulme Trust

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Reference140 articles.

1. U.S. Energy Information Administration, International Energy Outlook 2016, 2016. doi:www.eia.gov/forecasts/ieo/pdf/0484(2016).pdf

2. https://www.euro-fusion.org/jet/jets-main-features/, EUROFusion—Jet’s main features, Webpage. (2019)

3. https://www.iter.org/proj/inafewlines, What will ITER do?, Webpage. (2019)

4. Bolt H, Brendel A, Levchuk D, Greuner H, Maier H (2006) Materials for plasma facing components of fusion reactors. Energy Mater Mater Sci Eng Energy Syst 1:121–126. https://doi.org/10.1179/174892406X144451

5. https://www.iter.org/sci/whatisfusion, What is Fusion?, Webpage. (2019)

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3