Fabrication, electrical performance analysis and photovoltaic characterization of β-H2Pc/p-Si heterojunction for solar cell device applications

Author:

El-Saady A. A.,El-Nahass M. M.,Roushdy N.,Abdel Basset Dalia M.,Farag A. A. M.

Abstract

AbstractThe aim of this study was to explore the potential of nanocrystalline β-metal-free phthalocyanine (β-H2Pc) in optoelectronics, particularly for the creation of a β-H2Pc/p-Si heterojunction. With a focus on photovoltaic performance, the present work aimed to assess its thermal stability, crystalline structure, optical characteristics, electrical behavior, and applicability in optoelectronic applications. We successfully fabricated a β-H2Pc/p-Si heterojunction at room temperature using a conventional high-vacuum thermal evaporation method, offering a practical approach for integrating these materials into electronic devices. Thermal gravimetric Assessment (TGA) confirmed β-H2Pc’s remarkable thermal stability up to 470 °C, which holds significant promise for high-temperature applications. Transmission Electron Microscopy (TEM) revealed the nanocrystalline nature of the deposited β-H2Pc, which is crucial for the structural integrity of advanced electronic devices. The absorption coefficient spectrum exhibited distinct absorption bands attributed to π–π* excitations, with electronic transitions identified and characterized by a 1.51 eV onset band gap and a 2.74 eV fundamental optical energy gap, highlighting its potential in optoelectronic applications. The current–voltage characteristics of the β-H2Pc/p-Si heterojunction displayed a diode-like behavior at various temperatures, with excellent rectifying properties. Photovoltaic behavior under illumination showed a power conversion efficiency of 1.1%, emphasizing its promise for renewable energy applications and future optoelectronic devices.

Funder

Science and Technology Development Fund

Ain Shams University

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3