Deep neural network and model-based clustering technique for forensic electronic mail author attribution

Author:

Apoorva K. A.,Sangeetha S.

Abstract

AbstractElectronic mail is the primary source of different cyber scams. Identifying the author of electronic mail is essential. It forms significant documentary evidence in the field of digital forensics. This paper presents a model for email author identification (or) attribution by utilizing deep neural networks and model-based clustering techniques. It is perceived that stylometry features in the authorship identification have gained a lot of importance as it enhances the author attribution task's accuracy. The experiments were performed on a publicly available benchmark Enron dataset, considering many authors. The proposed model achieves an accuracy of 94% on five authors, 90% on ten authors, 86% on 25 authors and 75% on the entire dataset for the Deep Neural Network technique, which is a good measure of accuracy on a highly imbalanced data. The second cluster-based technique yielded an excellent 86% accuracy on the entire dataset, considering the authors' number based on their contribution to the aggregate data.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3