Conductivity vs functionalization in single-walled carbon nanotube films

Author:

Jouni Mohammad,Fedorko Pavol,Celle Caroline,Djurado David,Chenevier Pascale,Faure-Vincent JérômeORCID

Abstract

AbstractDiazo functionalization is a chemical method that changes the conductance of metallic single-walled carbon nanotubes (SWCNTs) by disrupting the C–C double bonds. Its application to native mixtures of metallic and semiconducting SWCNTs is a promising way of large-scale production of semiconducting SWCNTs for use in electronics. This has been well studied on isolated SWCNTs, but the implications on the conductivity of SWCNT materials are still unclear. Here, we study the conductivity of such functionalized SWCNT films with a progressively decreased metallic/semiconducting ratio in a wide range of temperatures (4–300 K) to unravel the charge transport mechanisms of metallic and semiconducting SWCNT subnetworks to show how these components participate in the total conductivity of the films. At low functionalization degree (below 0.2 mol%), the conductivity is dominated by a subnetwork of metallic SWCNTs through two parallel mechanisms: a Luttinger liquid mechanism and a Variable Range Hopping process. Higher functionalization (over 0.4 mol%) destroys the Luttinger liquid mechanism, and a second parallel Variable Range Hopping process arises, attributed to the conduction through the semiconducting SWCNTs. At these high functionalization degrees, the SWCNT film behaves as a material with the desired semiconducting properties. Graphical abstract We studied the conductivity of chemically functionalized Single Walled Carbon Nanotube films with a progressively decreased metallic/semiconducting ratio in a wide range of temperatures (4–300 K) to unravel the charge transport mechanisms of metallic and semiconducting SWCNT subnetworks to show how these components participate in the total conductivity of the films.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3