Analytical approach for modeling and simulation of photonic crystal fiber based on low effective material loss

Author:

Rahman Md. Habibur,Rana Md. Masud,Hossain Md. Selim,Sen Shuvo,Al-Amin Md.

Abstract

AbstractCOMSOL Multiphysics simulation software has been used to create a hexagonal photonic crystal fiber (H-PCF) with hexagonal cladding and a rotating hexa elliptical shape core. The hexagonal photonic crystal fiber (H-PCF) fiber is built on five layers of circular air holes, and it is suitable for telecommunication applications especially optical fiber communication in the terahertz (THz) frequency range. The hexagonal photonic crystal fiber (H-PCF) is designed to have an ultra-low effective material loss (EML), a higher core power fraction, a bigger effective area, and reduced confinement loss. The smallest effective material loss from the proposed hexagonal photonic crystal fiber (H-PCF) is 0.00689 cm−1, with a better core power fraction of 82%, less confinement loss of 3.45 × 10–14 cm−1 and a better effective area of 3.65 × 10–4 m2 is achieved at one terahertz (THz) waveguide region. Furthermore, using the features of the V-Parameter, our developed hexagonal photonic crystal fiber (H-PCF) fiber reveals an optical waveguide with one mode throughout a frequency range of terahertz (THz) wave area. So, it has been said that our hexagonal photonic crystal fiber (H-PCF) structure will be highly beneficial for optical fiber communications applications in the THz frequency range.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of Photonic Crystal Fiber with a rectangular core using Comsol;2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT);2024-05-03

2. Multi analyte detection based on D-shaped PCF sensor for glucose concentrations sensing;Optical and Quantum Electronics;2023-12-29

3. Insights into the influence of Bi2O3 on the structural and optical characteristics of novel Bi2O3–B2O3–TeO2–MgO–PbO glasses;Optical and Quantum Electronics;2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3