Synthesis and characterizations of (Mg, Co, Ni, Cu, Zn)O high-entropy oxides

Author:

Desissa Temesgen DebeloORCID,Meja Matusal,Andoshe Dinsefa,Olu Femi,Gochole Fekadu,Bekele Gebisa,Zelekew Osman Ahmed,Temesgen Tatek,Brehane Belay,Kuffi Kumsa D.,Hunde Tadele

Abstract

AbstractHigh-temperature structural ceramic materials require stability in terms of thermal and mechanical properties. High entropy oxides (HEOs) are among the emerging novel family of advanced ceramic materials with peculiar functional properties. However, their thermal stabilities and mechanical properties are not well investigated. In this work, HEO systems were synthesized from binary oxides of MgO, CoO, NiO, CuO, and ZnO using solid-state reaction method at high temperature, after obtaining the individual oxides through co-precipitation methods. The phase purity of as-synthesized and sintered samples was characterized using X-ray powder diffraction, while the microstructural investigation was performed using Scanning electron microscopy. Mechanical property of the sintered samples at different sintering times and temperatures was investigated and the sample sintered at a sintering temperature of 1200 °C for 15 h sintering time showed a maximum Vickers hardness of about 16 GPa. This result is comparable with some of the hard ceramic materials, and therefore the materials could be a potential candidate for structural applications.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3