Abstract
AbstractThe welding of thermoplastic pipes under a shear joint configuration using friction spin welding is investigated. The shear joint configuration consists of two cylindrical and concentric polypropylene plastic parts joined with each other at their interfacing cylindrical surfaces through frictional heat generation. The effects of welding pressure and rotational velocity on the joint overlap distance and joint strength between the parts of polypropylene plastic are evaluated. The study is of a specific application in making plastic pressure vessels and joining of pipes. The joint strength is tested by conducting the hydraulic pressure burst test. The burst test is conducted for welded specimens manufactured using different values of rotational velocity and welding pressure. It is observed that at the constant spin velocities, the welding pressure in the range 64.8 to 65.2 kPa produced better joint strength than the other values of welding pressure in the overall range 64–76 kPa. It is concluded that the suitable welding pressure range to manufacture polypropylene plastic pressure vessels in the shear joint configuration using friction spin welding is 64.5 to 65.2 kPa. Further, it is established that the user can control the joint overlap distance at 64.8 kPa welding pressure by selectively controlling the rotational velocity in the range of 700 to 2500 rpm.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献