Isolation and characterization of ginseng-derived exosome-like nanoparticles with sucrose cushioning followed by ultracentrifugation

Author:

Kim Jisu,Lee Yeon-HeeORCID,Wang Jianxin,Kim Youn Kyung,Kwon Il Keun

Abstract

AbstractGinseng is a traditional medicine that has been used for millennia. Asian ginseng (Panax ginseng Meyer) has multiple pharmacological properties. To determine the efficacy of ginseng-derived exosome-like nanoparticles (GDEs), GDEs should be isolated and characterized. GDEs from P. ginseng were isolated via sequential centrifugation using 68 and 27% of sucrose cushioning followed by ultracentrifugation. The size distribution, zeta potential, and morphology of GDEs were evaluated using DLS, NTA, and TEM. GDEs were quantified by measuring the total RNA and protein concentration. The stability of the freeze-dried GDEs was evaluated for 90 days. Uniform and reproducible GDEs were successfully isolated with high yield and purity. GDEs were found to be spherical with an average diameter of 105.8 nm and a negative surface charge of − 20.7 mV. Substantial amounts of nanoparticles of GDEs were counted using NTA, with a concentration of 2.05 × 1013 particles/mL. According to the evaluation of their protein and total RNA concentration, the freeze-dried GDEs were stable for up to 60 days at room temperature. The results suggest the utility of a brief isolation protocol using sucrose double fractionation, which can be used for the mass production of plant-derived exosome-like nanoparticles. In addition, the stability of GDEs was maintained even after freeze-drying and storage for 60 days. This method has potential for application in the research for plant-derived exosome-like nanoparticles, where cost-effective exosome isolation with high yield and purity is an important step.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3