Formulation of probability-based pervasive information set features and Hanman transform classifier for the categorization of mammograms

Author:

Dabass Jyoti,Hanmandlu M.,Vig Rekha

Abstract

AbstractWith aim of detecting breast cancer at the early stages using mammograms, this study presents the formulation of five feature types by extending the information set to encompass the concept of an intuitionist fuzzy set. The resulting pervasive information set gives not only the certainty of the pixel intensities of mammograms to a class but also the deficiency in the fuzzy modeling referred to as the hesitancy. The generalized adaptive Hanman Anirban fuzzy entropy function is shown to be equivalent to the hesitancy entropy function. The probability-based fuzzy Hanman transform and the pervasive Information with probability taking the role of hesitancy degree help derive the above five feature types termed as probability-based pervasive Information set features. The effectiveness of each feature type is demonstrated on the mini-MIAS and DDSM databases for the multi-class categorization of mammograms using the Hanman transform classifier. The statistical analysis by ANOVA test proves that the features are statistically significant and the experimental results are shown to be clinically relevant by the expert radiologists. The performance of the five feature types is either superior to or equal to that of some deep learning architectures on comparison but they outperform the state-of-the-art literature methods in the classification of breast cancer using mammograms.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mammogram Classification with HanmanNets Using Hanman Transform Classifier;Journal of Modern Physics;2024

2. False Positive Reduction in Mammographic Mass Detection;Computer, Communication, and Signal Processing. AI, Knowledge Engineering and IoT for Smart Systems;2023

3. FuzzyDeepNets based feature extraction for classification of mammograms;Intelligence-Based Medicine;2023

4. Towards non-data-hungry and fully-automated diagnosis of breast cancer from mammographic images;Computers in Biology and Medicine;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3