Blast mitigation by perforated plates using an explosive driven shock tube: study of geometry effects and plate numbers

Author:

Schunck T.ORCID,Eckenfels D.

Abstract

AbstractThis work is set in the context of blast mitigation based on geometric means, namely perforated metallic plates or grids. When a shock wave passes through a perforated plate, the flow field is modified, and new shock waves are created, as well as regions of vortices and turbulence in which the energy of the wave can be dissipated. In this study, an explosive driven shock tube (EDST) was used to visualize the interaction of a blast wave with perforated plates or with a piece of cast metallic foam. Additionally, the overpressure and the impulse of the reflected blast wave on a wall located downstream were assessed. The use of an EDST allowed the evaluation of the mitigation capacity under a high dynamic loading. Several combinations of perforated plates were tested, varying the geometry and the number of plates, as well as switching between two different spacings. When the shock wave collided with a plate, we observed that part of the incident shock wave was reflected by the plate, while the remaining wave was transmitted through it. Downstream of the plate, both the overpressure and the impulse were reduced, this effect being more prominent as the porosity of the plates decreased. When two plates were placed as obstacles, this phenomenon of reflection/transmission was repeated twice consecutively, further reducing the downstream reflected overpressure and impulse. An array of three plates or a piece of metallic foam were even more effective in mitigating the blast wave. Varying the distance between two or three plates had no effect on blast mitigation.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3