Abstract
AbstractThe present study addresses the production of hydrochars from brown seaweed (Fucus serratus) (FS-HCs), coconut shell (CS-HCs), and oak (Oak-HCs) as potential adsorbents using hydrothermal carbonisation (HTC). The effect of HTC processing temperature on the physicochemical adsorbent characteristics of the hydrochars is investigated at different temperatures (200, 220, 250 °C) using a hydrothermal batch reactor. Increasing HTC temperature causes the formation of many spheres in CS-HCs and Oak-HCs, increasing their porosity, except FS-HCs. The surface area of the hydrochars increases with increasing HTC temperature; 10.93–12.78 m2/g for FS-HCs, 2.18–21.94 m2/g for CS-HCs, except for Oak-HCs which decreases from 4.89 to 3.09 m2/g. Increasing HTC temperature decreases volatile matter content in the hydrochars, increases fixed carbon content, and decreases H/C ratio (except for FS-HCs) and O/C ratio of the hydrochars. For all the hydrochars, increasing the HTC temperature results in a slight decrease in zeta potential magnitude, with negatively charged surfaces, making them potential adsorbents for cationic pollutants. The study confirms that the HTC process improves key chemical and physical characteristics of the hydrochars compared to the original biomass, and that the physicochemical adsorbent characteristics are enhanced as the processing temperature increases.
Funder
Engineering and Physical Sciences Research Council
UK-India Education and Research Initiative
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献