Direct seeded rice in sequence with zero-tillage wheat in north-western India: addressing system-based sustainability issues

Author:

Yadav Dharam BirORCID,Yadav Ashok,Vats Anil Kumar,Gill Gurjeet,Malik Ram K.

Abstract

AbstractResource conserving and eco-friendly interventions through improved crop establishment are the need of time to produce more with less resources, and mitigating climatic vulnerabilities and protecting environmental quality in the rice–wheat cropping system (RWCS) of India. In this context, seven years (2010–2017) field experimentation at Karnal, Haryana, India revealed that the weed infestation was more intensified and diversified in direct seeded rice (DSR) than puddled transplanted rice (PTR), and even eliminating puddling in rice-induced more infestation of Phalaris minor in succeeding wheat crop. Residue retention in zero-till (ZT) DSR and rotating conventional till (CT) DSR with PTR reduced weed pressure compared to continuous DSR. Root knot and plant parasitic nematodes were less in DSR than PTR but reverse was true for saprozoic nematodes in DSR and ZT situations. CTDSR, ZTDSR (with or without residues), and ZT/CT machine-transplanted rice (MTR) produced grain yields at par (P = 0.05) with PTR. The grain yield of ZT wheat (5.03–6.90 t ha−1) in sequence with CT/ZT rice establishment (DSR/MTR) was 0.3–0.6 t ha−1 higher than what it was attained after puddled rice systems. Net returns from DSR/MTR-based cropping systems were higher than PTR, with 22–31% saving of labor. Irrigation water productivity was also higher under DSR (27.5–29.9 kg ha-cm−1) than PTR (23.7 kg ha-cm−1), with 17.5–22.8% reduction in irrigation input. There was also improvement in soil health under ZTDSR/MTR (higher OC, N, P and K, and lower bulk density) compared to PTR. Overall, the resource conservation and soil health improvement through these planting methods signaled toward system stability over trade-offs in RWCS.

Funder

Australian Centre for International Agricultural Research

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3