Study on the effects of drying–wetting cycles on the dynamic elasticity modulus of weathered red sandstone soil

Author:

Deng Yunye

Abstract

AbstractIn this paper, the effect of drying–wetting cycles on the dynamic elasticity modulus of weathered red sandstone soil was studied based on a series of unconsolidated undrained dynamic triaxial tests under different confining pressures and with the help of the Hardin–Drnevich model. The main results from this work as follows: (1) Hardin–Drnevich model can well express the hyperbolic behaviors of dynamic backbone curves of the weathered red sandstone soil exposed to drying–wetting cycles. (2) Both the maximum dynamic elasticity modulus and the dynamic elastic modulus of the weathered red sandstone soil decreased linearly with numbers of drying–wetting cycles under a certain confining pressure. The dynamic elasticity modulus decreased non-linearly with the increase of dynamic strain. (3) The maximum dynamic elastic modulus of the weathered red sandstone soil decreased by 19.62% to 70.91%, 21.16% to 71.07%, and 29.53% to 77.36%, respectively after 3 to 12 drying–wetting cycles under confining pressures of 100, 200, and 300 kPa. The rate at which the maximum dynamic elastic modulus decreases is basically the same under different confining pressures.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3