Robust model reference adaptive controller for atmospheric plasma spray process

Author:

Guduri B.ORCID,Batra R. C.

Abstract

AbstractWe add the σ-modification and the low-frequency learning to the model reference adaptive controller (MRAC) (Guduri et al. in SN Appl Sci 3:1–21, 2021) to make it robust in the presence of two simultaneous bounded disturbances and maintain consistent mean particles’ temperature and velocity collectively called mean particles’ states (MPSs) when they impact the substrate to be coated. The MPSs affect the coating quality. Even though results are applicable to several coating processes, we consider an atmospheric plasma spray process (APSP). It is shown that the proposed controller can quickly adopt to disturbances in the average injection velocity of powder particles and in the arc voltage to change the input current, and the argon and the hydrogen flow rates to maintain constant values of the MPSs. The effects of the parameter values in the MRAC, the MRAC with $$\sigma$$ σ -modification (R-MRAC), and the R-MRAC with low-frequency learning (MR-MRAC) schemes on tracking error convergence, steady-state tracking error, disturbance rejection and the presence of overshoot have been studied. The numerical experiments suggest that $$2 \le \gamma \le 20,$$ 2 γ 20 , $$10 \le \sigma \le 100,$$ 10 σ 100 , and $$20 \le \lambda \le 80$$ 20 λ 80 for the MR-MRAC provide fast adaptation, no overshoot, and low tracking error in the controlled response. The parameter $$\lambda > 0$$ λ > 0 suppresses high-frequency oscillations in the closed-loop control system, and $$\gamma$$ γ serves to tune the controller gains. The control scheme has been tested using the software, LAVA-P, that simulates well an APSP.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3