A trial to convert a polymer FDM 3D printer to handle clay materials

Author:

Chaari Mohamed ZiedORCID,Abdelfatah Mohamed,Loreno Christopher

Abstract

AbstractThe research aims to show the ability to convert the Fused Deposition Modeling 3D printer to be compatible with the clay mixture after modifying the structure, setting up Cura software, and changing the print head technology. This solution provides research teams and scientists with opportunities in several ways (manufacture patch antenna substrate, dielectric automobile sensors, and ceramic dielectric aerospace technology). Additive manufacturing allows the production of many intricate shapes with ceramics, which is difficult with a traditional method. This paper used WASP ceramic slurry as raw material for Liquid Deposition Modeling (LDM) of various samples using the Archimedes screw and air pressure dispensing technique (a two-step process). LDM is a low-cost and straightforward technology appropriate for the clay prototype scale. Different clay-built shapes have been produced with water-to-clay ratios ranging from 0.57 to 0.69. The effect of the nozzle size in printing experiment tests is demonstrated. The experiment tested the print head (extruder) mechanism, the properties of the materials suitable for the putty, and how the wet slurry material is extruded from the nozzle. The optimum air pressure and slicing configuration for efficient printing are provided. Samples were stress-tested after they were dried for 24 h at average laboratory temperature and then exposed to 1000$$^\circ $$ for 1 h.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3D printing birdhouses with ceramic clay using a six-axis palletizing robot;Discover Applied Sciences;2024-08-30

2. Advancing Sustainable Construction: Insights into Clay-Based Additive Manufacturing for Architecture, Engineering, and Construction;Developments in Clay Science and Construction Techniques;2024-05-22

3. Parameter tuning for sustainable 3D Printing(3DP) of clay structures;Journal of Engineering Research;2024-05

4. Transforming a Six Axis Robotic Arm into a Ceramic 3D Printer;2024 IEEE 8th Energy Conference (ENERGYCON);2024-03-04

5. Applications of Additive Manufacturing in Construction and Building Industries;Practical Implementations of Additive Manufacturing Technologies;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3