Non-linear MHD convective flow of Carreau nanofluid over an exponentially stretching surface with activation energy and viscous dissipation

Author:

Babu K. S. SrinivasaORCID,Parandhama A.,Vijaya R. Bhuvana

Abstract

AbstractNumerical approach for a non-linear mixed convective magnetohydrodynamic two-dimensional Carreau nanofluid through an exponentially permeable stretching surface with viscous dissipation and velocity slip under the influence of Arrhenius activation energy in chemical reaction is reported. The effects of thermophoresis and Brownian motion are considered. The governing nonlinear equations of this model are transmuted into ODE’s through similarity variables and solved them with a shooting method based on R-K 4th order. Responses of fluid velocity, transfer rates (heat and mass) versus pertinent parameters of the problem for suitable values are obtained and the computational calculations for friction coefficient, Nusselt number and Sherwood number for the both suction and injections regions are presented in plots and tables. It is found that fluid velocity is an increasing function of Weissenberg number. Momentum boundary layer thickness is depressed by magnetic field impact. Increasing trend in Carreau fluid temperature is noticed due to larger values of thermophoresis and Brownian motion effects. Concentration field is a decreasing function of Brownian motion but an increasing function of thermophoresis. Activation energy augments the concentration curves and lowered by Schmidt number. Comparison of the results is made with already published results and we got good agreement.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3