Time series forecasting of agricultural product prices based on recurrent neural networks and its evaluation method

Author:

Kurumatani KoichiORCID

Abstract

AbstractWe propose a time series forecasting method for the future prices of agricultural products and present the criteria by which forecasted future time series are evaluated in the context of statistical characteristics. Time series forecasting of agricultural products has the basic importance in maintaining the sustainability of agricultural production. The prices of agricultural products show seasonality in their time series, and conventional methods such as the auto-regressive integrated moving average (ARIMA or the Box Jenkins method) have tried to exploit this feature for forecasting. We expect that recurrent neural networks, representing the latest machine learning technology, can forecast future time series better than conventional methods. The measures used in evaluating the forecasted results are also of importance. In literature, the accuracy determined by the error rate at a specific time point in the future, is widely used for evaluation. We predict that, in addition to the error rate, the criterion for conservation of the statistical characteristics of the probability distribution function from the original past time series to the future time series in the forecasted future is also important. This is because some time series have a non-Gaussian probability distribution (such as the Lévy stable distribution) as a characteristic of the target system; for example, market prices on typical days change slightly, however on certain occasions, change dramatically. We implemented two methods for time series forecasting based on recurrent neutral network (RNN), one of which is called time-alignment of time point forecast (TATP), and another one is called direct future time series forecast (DFTS). They were evaluated using the two aforementioned criteria consisting of the accuracy and the conservation of the statistical characteristics of the probability distribution function. We found that after intensive training, TATP of LTSM shows superior performance in not only accuracy, but also the conservation compared to TATP of other RNNs. In DFTS, DFTS of LSTM cannot show the best performance in accuracy in RMS sense, but it shows superior performance in other criteria. The results suggest that the selection of forecasting methods depends on the evaluation criteria and that combinations of forecasting methods is useful based on the application. The advantage of our method is that the required length of time series for training is enough short, namely, we can forecast the whole cycle of future time series after training with even less than the half of the cycle, and it can be applied to the field where enough numbers of continuous data are not available.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3