Wearable bracelet and machine learning for remote diagnosis and pandemic infection detection

Author:

Abdel-Ghani AyahORCID,Abdalla AmiraORCID,Abughazzah Zaineh,Akhund Mahnoor,Abualsaud KhalidORCID,Yaacoub EliasORCID

Abstract

AbstractThe COVID-19 pandemic has highlighted that effective early infection detection methods are essential, as they play a critical role in controlling the epidemic spread. In this work, we investigate the use of wearable sensors in conjunction with machine learning (ML) techniques for pandemic infection detection. We work on designing a wristband that measures various vital parameters such as temperature, heart rate, and SPO2, and transmits them to a mobile application using Bluetooth Low Energy. The accuracy of the wristband measurements is shown to be within 10% of the readings of existing commercial products. The measured data can be used and analyzed for various purposes. To benefit from the existing online datasets related to COVID-19, we use this pandemic as an example in our work. Hence, we also develop ML-based models that use the measured vital parameters along with cough sounds in order to determine whether a case is COVID-19 positive or not. The proposed models are shown to achieve remarkable results, exceeding 90% accuracy. One of our proposed models exceeds 96% performance in terms of accuracy, precision, recall, and F1-Score. The system lends itself reasonably for amendment to deal with future pandemics by considering their specific features and designing the ML models accordingly. Furthermore, we design and develop a mobile application that shows the data collected from the wristband, records cough sounds, runs the ML model, and provides feedback to the user about their health status in a user-friendly, intuitive manner. A successful deployment of such an approach would decrease the load on hospitals and prevent infection from overcrowded spaces inside the hospital.

Funder

Qatar University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3