Abstract
AbstractDissolved carbon (C) leaching in and from soils plays an important role in C transport along the terrestrial-aquatic continuum. However, a global overview and analysis of dissolved carbon in soil solutions, covering a wide range of vegetation types and climates, is lacking. We compiled a global database on annual average dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in soil solutions, including potential governing factors, with 762 entries from 351 different sites covering a range of climate zones, land cover types and soil classes. Using this database we develop regression models to calculate topsoil concentrations, and concentrations versus depth in the subsoil at the global scale. For DIC, the lack of a proportional globally distributed cover inhibits analysis on a global scale. For DOC, annual average concentrations range from 1.7 to 88.3 (median = 25.27) mg C/L for topsoils (n = 255) and from 0.42 to 372.1 (median = 5.50) mg C/L for subsoils (n = 285, excluding lab incubations). Highest topsoil values occur in forests of cooler, humid zones. In topsoils, multiple regression showed that precipitation is the most significant factor. Our global topsoil DOC model ($${\mathrm{R}}^{2}=0.36$$
R
2
=
0.36
) uses precipitation, soil class, climate zone and land cover type as model factors. Our global subsoil model describes DOC concentrations vs. depth for different USDA soil classes (overall ($${\mathrm{R}}^{2}=0.45$$
R
2
=
0.45
). Highest subsoil DOC concentrations are calculated for Histosols.
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献