Switched time delay control based on artificial neural network for fault detection and compensation in robot manipulators

Author:

Maincer Dihya,Mansour Moufid,Hamache Amar,Boudjedir Chemseddine,Bounabi Moussaab

Abstract

AbstractThis work proposes a switched time delay control scheme based on neural networks for robots subjected to sensors faults. In this scheme, a multilayer perceptron (MLP) artificial neural network (ANN) is introduced to reproduce the same behavior of a robot in the case of no faults. The reproduction characteristic of the MLPs allows instant detection of any important sensor faults. In order to compensate the effects of these faults on the robot’s behavior, a time delay control (TDC) procedure is presented. The proposed controller is composed of two control laws: The first one contains a small gain applied to the faultless robot, while the second scheme uses a high gain that is applied to the robot subjected to faults. The control method applied to the system is decided based on the ANN detection results which switches from the first control law to the second one in the case where an important fault is detected. Simulations are performed on a SCARA arm manipulator to illustrate the feasibility and effectiveness of the proposed controller. The results demonstrate that the free-model aspect of the proposed controller makes it highly suitable for industrial applications.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Global exponential synchronization of switching neural networks with leakage time-varying delays;Communications in Nonlinear Science and Numerical Simulation;2024-06

2. Self-organization Algorithm of Formation Network based on Hybrid MAC Protocol;2023 3rd International Conference on Communication Technology and Information Technology (ICCTIT);2023-11-24

3. Identification of Systems Having Unstable Dynamics and Time Delays Using Delayed Recurrent Neural Networks;Arabian Journal for Science and Engineering;2023-10-30

4. Fault Diagnosis in Robot Manipulators Using SVM and KNN;Intelligent Automation & Soft Computing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3