Abstract
AbstractLarval therapy has been reported to be beneficial in the treatment of chronic wounds by promoting granulation tissue formation, due to its antimicrobial properties and by degrading necrotic tissue. However, the use of live maggots is problematic for patient acceptance, and thus there is a need to develop materials which can release therapeutic biomolecules derived from maggot secretions to the wound bed. Here we describe the fabrication of a novel bioactive scaffold that can be loaded with Lucilia sericata maggot alimentary excretion/secretion fluids (L. sericata maggot E/S), and which can also provide structural stability for mammalian cell-growth and migration to support wound repair. Electrospun scaffolds were prepared from a poly(caprolactone)-poly(ethylene glycol)–block copolymer (PCL-b-PEG) blended with PCL with average fibre diameters of ~ 4 μm. The scaffolds were hydrophilic and were able to support viable fibroblasts that were able to infiltrate throughout the extent of the scaffold thickness. L. sericata maggot (E/S) was subsequently adsorbed to the surface and released over 21 days with retention of the protease activity that is responsible for supporting fibroblast migration. The incorporation of L. sericata maggot E/S on the surface of the electrospun fibres of PCL-PEG/PCL fibres is a novel approach with potential for future application to support skin wound healing within a clinical setting.
Funder
Comisión Nacional de Investigación Científica y Tecnológica
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献