Abstract
AbstractThe purpose of this paper was determining the effects of two nanoparticles additions in a commercial epoxy coating system on rheology characterization. Two kinds of hybrid organic–inorganic silicates (benzytallowdimethylammonium salts with bentonite) were studied, APA, with C14-16 organic chain and, HT, with C2-4 organic chain. A 22 factorial design, with two categorical nanoparticules factors was applied. The experimental data of viscosity were fit to three different rheological constitutive models: Herschell-Bulkley, Carreau-Yasuda and Cross. The best fit was obtained by Herschel-Bulkley model. The APA nanoparticle had substantial changes in yield stress values, but no effect was observed when HT had been isolated. Two thixotropic models were analyzed for the epoxy system, and the better performance was observed for the model with two rheological parameters. The presence of nanoparticule in epoxy coating reduced around 40% the recovery time. The addition of nanoparticules changes the rheological properties of a commercial coating. The X-Rays Diffraction analyses were done to observe the dispersions degree and exfoliations in the epoxy system. The crystalline peak of nanoparticles had lost for all coating formulations. The electromagnetic interference shielding attenuation was 60% in the formulations with high content of both nanoparticles. The APA and HT improved hence, the anticorrosion performance of the epoxy coating for 720 h in chloride solution. Corrosion resistance had the best performance in the coating with high concentration of carbon black and nanoparticles.
Funder
Fundacao amparo a pesquisa do rio de janeiro
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献