Measurements and calculations of the equilibrium adsorption amounts of CO2–N2, CO–N2, and CO2–CO mixed gases on 13X zeolite

Author:

Shigaki NobuyukiORCID,Mogi Yasuhiro,Haraoka Takashi,Furuya Eiji

Abstract

AbstractPressure swing adsorption (PSA) is one practical process for CO2 separation from the exhaust gases in various industries, such as blast furnace gas in steel works. For optimum design of the PSA process, precise estimation of the adsorption equilibrium of mixed gases is desired. The ideal adsorbed solution (IAS) model is a reliable model for this estimation. However, the IAS model requires convergent calculations, which significantly increase the calculation load, especially in dynamic PSA simulations. An analytical formula such as the extended Langmuir (EX-LM) equation is more useful for calculation of the equilibrium adsorption amounts of mixed gases. A drawback of this equation, however, is the uncertainty of the thermodynamic consistency and consequently the accuracy of the calculation results. In order to clarify the necessary conditions for application of the EX-LM equation as an approximation of the IAS model with Langmuir equation (IAS-LM model), both the analytical features and the estimation accuracy of these different methods were evaluated. To evaluate the accuracy of the equations, the equilibrium adsorption amount of mixed gases consisting of CO2, N2, and CO, which are the major gas components of blast furnace gas in steel works, on 13X zeolite were measured experimentally. The results confirmed that the accuracy of the EX-LM equation varies depending on the gas pressure and also the affinities of the adsorbates. Under higher gas pressure conditions, more reliable calculation results were obtained by the IAS-LM model.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3