Lower nodule biomass with increased nitrogenase efficiency in Robinia pseudoacacia seedlings when grown under low soil phosphorus conditions

Author:

McCulloch Lindsay A.ORCID,Porder Stephen

Abstract

AbstractSymbiotic nitrogen (N) fixation is the largest non-anthropogenic N input to many terrestrial ecosystems. The energetic expense of symbiotic N fixation suggests soil phosphorus (P) availability may regulate symbiotic nitrogen fixation directly through nodule development and function, and/or indirectly through plant growth. Since P availability is heterogenous in the landscape, we sought to understand if symbiotic nitrogen fixation responds to both P availability and heterogeneity. To test how P availability affects symbiotic nitrogen fixation, we grew Robinia pseudoacacia seedlings under high (8.1 g P m−2) and low (0.2 g P m−2) conditions. Soil P heterogeneity was simulated by splitting roots into soil patches receiving P or no-P fertilizer. At the whole plant level, P availability limited seedling and nodule biomass. However, the low P treatment had higher nitrogenase efficiency (acetylene reduced (AR) g−1 nodule; a nodule efficiency proxy). High P seedlings had significantly more root and nodule biomass in the patches directly receiving P fertilizer, but patch proliferation was absent in the low P treatment. AR g−1 seedling did not differ between P treatments, suggesting P indirectly limited symbiotic nitrogen fixation through plant growth, rather than directly limiting symbiotic nitrogen fixation. This relatively consistent AR g−1 seedling across treatments demonstrates the ability of seedlings to respond to low P conditions with increased nitrogenase efficiency.

Funder

Institute at Brown for Environment and Society, Brown University

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3