New approach for localization and smart data transmission inside underground mine environment

Author:

RayChowdhury AnkitaORCID,Pramanik Ankita,Roy Gopal Chandra

Abstract

AbstractThis paper presents an approach to access real time data from underground mine. Two advance technologies are presented that can improve the adverse environmental effect of underground mine. Visible light communication (VLC) technology is incorporated to estimate the location of miners inside the mine. The distribution of signal to noise ratio (SNR) for VLC system is also studied. In the second part of the paper, long range (LoRa) technology is introduced for transmitting underground information to above the surface control room. This paper also includes details of the LoRa technology, and presents comparison of ranges with existing above the surface technologies.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Systematic Review on Implementation of Internet-of-Things-Based System in Underground Mines to Monitor Environmental Parameters;Journal of The Institution of Engineers (India): Series D;2023-09-05

2. IoT and LoRa based smart underground coal mine monitoring system;Microsystem Technologies;2023-06-18

3. On Underground Coal Mine Environment Monitoring with LoRa Range Extension;2023 5th International Conference on Energy, Power and Environment: Towards Flexible Green Energy Technologies (ICEPE);2023-06-15

4. Use-Case-Oriented Evaluation of Wireless Communication Technologies for Advanced Underground Mining Operations;Sensors;2023-03-28

5. Roof weighting and support of a largely mined shallow coal seam;SN Applied Sciences;2022-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3