Author:
Arantza Sánchez-Jiménez,Hiram Medrano-Roldán,Erika Kothe,Chávez-Avilés Mauricio Nahuam,Valiente-Banuet Juan I.,Fierros-Romero Grisel
Abstract
AbstractBio- and phytoremediation, being encouraging terms implying the use of biological systems for cleansing purposes, have risen a worthy venture toward environmental restoration in discouraging scenarios, such as the augmentation of indestructible heavy metals. Hyperaccumulating plants and heavy metal resistant microbes own mechanisms embedded in their metabolism, proteins, and genes that confer them with “super characteristics” allowing them to assimilate heavy metals in order to amend polluted soils, and when combined in a symbiotic system, these super features could complement each other and be enhanced to overpower the exposure to toxic environments. Though xenobiotic pollution has been an object of concern for decades and physicochemical procedures are commonly carried out to offset this purpose, a “live” remediation is rather chosen and looked upon for promising results. A variety of benefits have been registered from symbiotic relationships, including plants teaming up with microbes to cope down with non-biodegradable elements such as heavy metals; but a carefully maneuvered interaction might signify a greater insight toward the application of bioremediation systems. These manipulations could consist of genetic engineering and/or additional supplementation of molecules and microbes. In the present study, a contemporary connection between plants and microbes involving their controlled management is summarized in a visionary display.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献