Music generation with variational recurrent autoencoder supported by history

Author:

Yamshchikov Ivan P.ORCID,Tikhonov Alexey

Abstract

AbstractA new artificial neural network architecture that helps generating longer melodic patterns is introduced alongside with methods for post-generation filtering. The proposed approach, called variational autoencoder supported by history, is based on a recurrent highway gated network combined with a variational autoencoder. The combination of this architecture with filtering heuristics allows the generation of pseudo-live, acoustically pleasing, melodically diverse music.

Funder

Max Planck Institute for Mathematics in the Sciences

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Reference28 articles.

1. Boulanger-Lewandowski N, Bengio Y, Vincent P (2012) Modeling temporal dependencies in high-dimensional sequences: application to polyphonic music generation and transcription. In: In Proceedings of the 29th international conference on international conference on machine learning. Citeseer

2. Bowman S, Vilnis L, Vinyals O, Dai A, Jozefowicz R, Bengio S (2016) Generating sentences from a continuous space. In: Proceedings of the 20th SIGNLL conference on computational natural language learning, pp 10–21

3. Briot JP, Hadjeres G, Pachet FD (2017) Deep learning techniques for music generation–a survey. arXiv preprint arXiv:1709.01620

4. Choi K, Fazekas G, Sandler M (2016) Text-based LSTM networks for automatic music composition. arXiv preprint arXiv:1604.05358

5. Chu H, Urtasun R, Fidler S (2016) Song from pi: a musically plausible network for pop music generation. arXiv preprint arXiv:1611.03477

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generating Musical Sequences with Transformers;International Journal of Innovative Science and Research Technology (IJISRT);2024-05-02

2. VAE-LSTM Data Augmentation for Cattle Behavior Classification Using a Wearable Inertial Sensor;IEEE Sensors Letters;2024-05

3. Neural Harmony: Advancing Composition with RNN-LSTM in Music Generation;2024 IEEE International Conference on Contemporary Computing and Communications (InC4);2024-03-15

4. Hierarchical multi-head attention LSTM for polyphonic symbolic melody generation;Multimedia Tools and Applications;2024-02-08

5. Grey Wolf Optimizer Based Deep Learning Mechanism for Music Composition with Data Analysis;Applied Soft Computing;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3