Abstract
AbstractPaddy soils in Bangladesh experience extensive irrigation with groundwater and surface water, both having variable geochemical constituents. The soils also have topological variations across the landscape. To understand the geochemical variability in the soils as affected by the different sources of irrigation water and the topographical variability, cultivation zones of paddy soils irrigated with both groundwater (n = 904) and surface water (n = 281) across Bangladesh were sampled and analyzed for a suit of seventeen geochemical elements. This study also assessed the extent and distribution of arsenic and the other geochemical elements in the paddy soils (n = 1209) as well as in a set of neighboring non-paddy soils (n = 235) within the different inundation land types (highland, medium highland-1, medium highland-2, medium lowland, lowland and very lowland) of Bangladesh. The mean concentrations of aluminum (26,000 mg/kg), cobalt (13 mg/kg), copper (32 mg/kg), iron (28,250 mg/kg), lead (18 mg/kg), magnesium (8050 mg/kg), molybdenum (1.02 mg/kg), nickel (41 mg/kg), potassium (4870 mg/kg), sodium (750 mg/kg) and zinc (70 mg/kg) in the surface water-irrigated paddy soils were found to be significantly (0.001 ≥ p ≤ 0.05) higher compared to the concentrations in the soils irrigated with groundwater (23,400; 12; 28; 25,650; 17; 7000; 0.96; 36; 4350; 600; and 62 mg/kg, respectively). Therefore, surface water used for paddy irrigation could increase the inputs of a number of toxic elements in the paddy soils having potential risk of crop contamination. Arsenic in the paddy and non-paddy soils varied significantly (F = 24.74, p < 0.001 and F = 3.42, p < 0.01, respectively) within the inundation land types, the very lowland (9.95 and 6.72 mg/kg, respectively) and lowland (8.33 and 5.20 mg/kg, respectively) having the highest mean arsenic concentrations and the medium highland-1 (5.27 and 5.17 mg/kg, respectively) having the lowest. The concentrations of the other geochemical elements analyzed were also observed to be higher, in general, in the soils of very lowland and lowland. Since the low-level lands are predominantly used for paddy cultivation, higher concentrations of various toxic elements, particularly arsenic, in such soils pose an increased risk of rice toxicity in Bangladesh. The results of this study present an inimitable geochemical database for the surface soils across Bangladesh which can be used in any future studies on the geomorphologically variable agricultural and non-agricultural Bangladeshi soils, providing a basis for environmental pollution assessment and sustainable mitigation approaches.
Funder
Commonwealth Scholarship Commission in the UK
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering
Reference72 articles.
1. BBS (Bangladesh Bureau of Statistics) (2018) 45 years Agriculture Statistics of Major Crops (Aus, Amon, Boro, Jute, Potato and Wheat). Statistics and Informatics Division (SID), Bangladesh Bureau of Statistics (BBS), Ministry of Planning, Government of the People’s Republic of Bangladesh. http://www.bbs.gov.bd/site/page/453af260-6aea-4331-b4a5-7b66fe63ba61/. Accessed 09 Dec 2020
2. IRRI (International Rice Research Institute) (2020) Rice profile in Bangladesh. http://books.irri.org/Bangladesh_IRRI_brochure.pdf. Accessed 09 Dec 2020
3. FAO (Food and Agriculture Organization) (2018) Bangladesh country profile. http://faostat.fao.org/static/syb/syb_16.pdf. Accessed 09 Dec 2020
4. World soils book series;SMI Huq,2013
5. Meharg AA, Rahman M (2003) Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 37(2):229–234. https://doi.org/10.1021/es0259842