Experimental investigation and mathematical modelling of batch and semi-continuous anaerobic digestion of cellulose at high concentrations and long residence times

Author:

Bolaji I. O.,Dionisi D.

Abstract

AbstractIn the context of the anaerobic digestion of slowly biodegradable substrates for energy and chemicals production, this study investigated the anaerobic digestion of cellulose without any chemical pre-treatments using open (undefined) mixed microbial cultures. The anaerobic conversion of cellulose was investigated in extended-length (run length in the range 518–734 days) batch and semi-continuous runs (residence time 20–80 days), at high cellulose concentration (20–40 g L−1), at temperatures of 25 and 35 °C. The maximum cellulose removal was 77% in batch (after 412 days) and 60% (at 80 days residence time) in semi-continuous experiments. In semi-continuous experiments, cellulose removal increased as the residence time increased however the cellulose removal rate showed a maximum (0.17 g L−1 day−1) at residence time 40–60 days. Both cellulose removal and removal rate decreased when cellulose concentration in the feed was increased from 20 to 40 g L−1. Liquid-phase products (ethanol and short chain organic acids) were only observed under transient conditions but not at the steady state of semi-continuous runs. Most of the observed results were well described by a mathematical model which included cellulose hydrolysis and growth on the produced glucose. The model provided insight into the physical phenomena behind the observed results.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3