Mechanical and thermal properties of composite carbonized briquettes developed from cassava (Manihot esculenta) rhizomes and groundnut (Arachis hypogea. L.) stalks with jackfruit (Artocarpus heterophyllus) waste as binder

Author:

Owino Cynthia Awuor,Lubwama Michael,Yiga Vianney Andrew,Were Faridah,Bongomin Ocident,Serugunda Jonathan

Abstract

AbstractComposite briquettes from agricultural residues are a potential sustainable domestic solid fuel resource. This study aimed to develop and characterize composite briquettes developed from cassava rhizomes and groundnut stalks with jackfruit waste binder as an alternative sustainable fuel for domestic cooking applications. Cassava rhizomes and groundnuts stalks feedstock were carbonized in a step-down kiln under slow pyrolysis conditions at temperatures between 400 and 500 ℃. Thermogravimetric analysis was used to determine the proximate and thermal properties of the developed composite briquettes. Bomb calorimetry was used to determine their heating values. Relaxed density, drop strength and compressive strength results were used to determine the mechanical properties of the developed briquettes. Design of Experiments (Box Behnken design) was used to evaluate the effect of factors (biochar amount, jackfruit waste binder amount, and amount of water) on the mechanical and thermal properties of the developed composite briquettes. The Coats-Redfern kinetic model was used to determine the activation energy for the developed briquettes. Calorific values and drop strength of developed composite briquettes ranged from 18.1 to 24.0 MJ/kg and 92–99%, respectively. Combustion performance results indicated that ignition temperature increased from 155.1 to 184 $$^\circ{\rm C}$$ C , when heating rate was increased from 10 to 15 $$^\circ{\rm C}$$ C /min. However, burnout temperature decreased from 618.1 to 453 $$^\circ{\rm C}$$ C /min with a similar corresponding increase in heating rate. Optimum biochar amount, amount of water, and jackfruit waste binder amount for optimal mechanical and thermal properties were 89.3%, 893.0 ml, and 29.5 g, respectively. Composite briquettes developed from cassava rhizomes and groundnut stalks with jackfruit waste as binder are suitable potential domestic cooking fuels.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3