Sliding mode control of antagonistically coupled pneumatic artificial muscles using radial basis neural network function

Author:

Nguyen Viet-Thanh,Pham Bao-Long,Nguyen Thi-Van-Anh,Bui Ngoc-Tam,Dao Quy-Thinh

Abstract

AbstractThis study presents a novel approach to enhance the control of Pneumatic Artificial Muscle (PAM) systems by combining Sliding Mode Control (SMC) with the Radial Basis Function Neural Network (RBFNN) algorithm. PAMs, when configured antagonistically, offer several advantages in creating human-like actuators. However, their inherent nonlinearity and uncertainty pose challenges for achieving precise control, especially in rehabilitation applications where control quality is crucial for safety and efficacy. To address these challenges, we propose an RBF-SMC approach that leverages the nonlinear elimination capability of SMC and the adaptive learning ability of RBFNN. The integration of these two techniques aims to develop a robust controller capable of effectively dealing with the inherent disadvantages of PAM systems under various operating conditions. The suggested RBF-SMC approach is theoretically verified using the Lyapunov stability theory, providing a solid foundation for its effectiveness. To validate its performance, extensive multi-scenario experiments were conducted, serving as a significant contribution of this research. The results demonstrate the superior performance of the proposed controller compared to conventional controllers in terms of convergence time, robustness, and stability. This research offers a significant contribution to the field of PAM system control, particularly in the context of rehabilitation. The developed RBF-SMC approach provides an efficient and reliable solution to overcome the challenges posed by PAMs’ nonlinearity and uncertainty, enhancing control quality and ensuring the safety and efficacy of these systems in practical applications.

Funder

Trường Đại học Bách Khoa Hà Nội

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3