Influence of the shape and mass of a small robot when thrown to a dummy human head

Author:

Alhaddad Ahmad Yaser,Cabibihan John-JohnORCID,Hayek Ahmad,Bonarini Andrea

Abstract

Abstract Social robots have shown some efficacy in assisting children with autism and are now being considered as assistive tools for therapy. The physical proximity of a small companion social robot could become a source of harm to children with autism during aggressive physical interactions. A child exhibiting challenging behaviors could throw a small robot that could harm another child’s head upon impact. In this paper, we investigate the effects of the mass and shape of objects thrown on impact at different velocities on the linear acceleration of a developed dummy head. This dummy head could be the head of another child or a caregiver in the room. A total of 27 main experiments were conducted based on Taguchi’s orthogonal array design. The data were then analyzed using ANOVA and then optimized based on the signal-to-noise ratio. Our results revealed that the two design factors considered (i.e. mass and shape) and the noise factor (i.e. impact velocities) affected the response. Finally, confirmation runs at the optimal identified shape and mass (i.e. mass of 0.3 kg and shape of either cube or wedge) showed an overall reduction in the resultant peak linear acceleration of the dummy head as compared to the other conditions. These results have implications on the design and manufacturing of small social robots whereby minimizing the mass of the robots can aid in mitigating the potential harm to the head due to impacts.

Funder

Qatar University

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3