Combining multiple human physiological signals using fuzzy logic to determine stress caused by battle dress uniforms

Author:

Periyaswamy ThamizhisaiORCID,Balasubramanian Mahendran

Abstract

Abstract This study presents a novel stress index for clothing using physiological signals to estimate stress induced by battle dress uniforms (BDU) during physical activity. The approach uses a fuzzy logic-based nonlinear mapping to compute the stress from physiological signals. Ten healthy men performed a battery of physical activities in a controlled environment. Heart rate (HR), respiration rate (RR), skin temperature (ST), and galvanic skin response (GSR) were measured continuously for the participants during activity wearing three kinds of clothing (two BDUs and a control garment). The individual physiological responses were combined using a fuzzy-logic system to derive a stress measure called Clothed Activity Stress Index (CASI). Repeated measures ANOVA showed that the garments significantly (α = .05) affected the HR (p < .001) and RR (p < .001). In addition, interactions between the activity and garment were significant for HR, RR, and ST (p < .001, p < .001, p < .036). The physiological measures differed significantly between rest and activity for the two uniforms. The stress indices (ranging between 0 and 1) during rest and activity were 0.24 and 0.35 for control, 0.27 and 0.43 for BDU-1, and 0.33 and 0.44 for BDU-2. It is shown here that clothing systems impact human stress levels to a measurable level. This computational approach is applicable to measure stress caused by protective wear under different operational conditions and can be suitable for sports and combat gears. Article Highlights A computational approach to non-linearly map human physiological signals and stress is presented. The stress caused by functional clothing systems is estimated using a fuzzy-logic mapping system for battle dress uniforms. Heart and respiration rates are highly sensitive to stress, while skin temperature and galvanic skin response are moderately sensitive.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3