Comparison of microstructure, mechanical, and electrochemical performance of laser-deposited FeCrV15 alloy at varying powder feed rates

Author:

Aramide Basiru Philip,Adegbola Taoreed Adesola,Jamiru Tamba,Popoola Abimbola Patricia Idowu,Adeoti Mathew Olurotimi,Sadiku Rotimi Emmanuel

Abstract

AbstractIn the realm of surface modification, repair, and reinforcement of components exposed to challenging operational conditions, such as tillage tools, laser cladding stands out as an innovative manufacturing technique. Employing this additive manufacturing approach, a functionally graded material with outstanding strength and properties is incorporated to enhance the desired attributes of the base material. This comparative investigation scrutinized and assessed the microstructural characteristics, hardness, wear resistance, and corrosion behavior of high carbon ferrochrome FeCrV15 coatings fabricated at two distinct powder feed rates, namely 5 and 6 g/min, respectively. The analysis delved into how the resultant coatings' molten bead deposition, microstructural evolution, hardness, wear resistance, and corrosion resistance were influenced by the powder feed rate. Evaluation of hardness was conducted using a Vickers microhardness testing apparatus, while phase identification was accomplished utilizing an X-ray diffractometer. The morphologies of the microstructures were scrutinized employing optical microscopy and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS). Furthermore, the corrosion response of the deposits in a soil–water environment was probed utilizing an Autolab potentiostat. A comprehensive assessment of the coatings' sliding wear performance was undertaken using an Anton Paar Tribometer. The findings of the study reveal that an escalation in the powder feed rate engenders heightened grain refinement within the microstructure, yielding a defect-free sample and augmenting the wear performance (with a wear rate of 2.42 × 10–6 mm3/N/m for sample B, surpassing 2.39 × 10–5 mm3/N/m for sample A and outstripping 1.72 × 10–3 mm3/N/m for the steel substrate). Additionally, the corrosion resistance is enhanced (with a corrosion rate of 0.0032 mm/yr for sample B, surpassing 0.0036 mm/yr for sample A, which, in turn, exceeds 0.1168 mm/yr for the steel substrate) in the case of sample B.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3