On models of blast overpressure effects to the thorax

Author:

Stottmeister Alexander,von Ramin MalteORCID,Schneider Johannes M.ORCID

Abstract

AbstractShock waves from explosions can cause lethal injuries to humans. Current state-of the-art models for pressure induced lung injuries were typically empirically derived and are only valid for detonations in free-field conditions. In built-up environments, though, pressure–time histories differ significantly from this idealization and not all explosions exhibit detonation characteristics. Hence, those approaches cannot be deployed. However, the actual correlation between dynamic shock wave characteristics and gradual degree of injury have yet to be fully described. In an attempt to characterize the physical response of the human body to complex shock-wave effects, viscoelastic models were developed in the past (Axelsson and Yelverton, in J Trauma Acute Care Surg 40, 31S–37S, 1996; Stuhmiller et al., in J Biomech. 10.1016/0021-9290(95)00039-9, 1996). We discuss those existing modeling approaches especially in view of their viscoelastic behavior and point out drawbacks regarding their response to standard stimuli. Further, we suggest to fully acknowledge the experimentally anticipated viscoelastic behavior of the effective thorax models by using a newly formulated standard model for viscoelastic solids instead of damped harmonic oscillators. Concerning injury assessment, we discuss the individual injury criteria proposed along with existing models pointing out desirable improvements with respect to complex blast situations, e.g. the necessity to account for repeated exposure (criteria with time-memory), and further adaption with respect to nonlinear gas dynamics inside the lung. Finally, we present an improved modeling approach for complex blast overpressure effects to the thorax with few parameters that is more suitable for the characteristics of complex blast wave propagation than other current models.

Funder

German Bundeswehr Technical Center for Protective and Special Technologies

Fraunhofer Institute for High Speed Dynamics (EMI)

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on somatosensory shock wave pressure measurement method based on PVDF film;Thin-Walled Structures;2024-03

2. Development of a New Human Thoracic Equivalent Model during Frontal Impact;SAE International Journal of Transportation Safety;2023-01-13

3. An Improved Equivalent Impact Model of Human Thorax for Human-Robot Collaboration;International Journal of Intelligent Robotics and Applications;2021-11-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3