Numerical evidences of almost convergence of wave speeds for the Burridge–Knopoff model

Author:

Mascia C.ORCID,Moschetta P.

Abstract

AbstractThis paper deals with the numerical approximation of a stick–slip system, known in the literature as Burridge–Knopoff model, proposed as a simplified description of the mechanisms generating earthquakes. Modelling of friction is crucial and we consider here the so-called velocity-weakening form. The aim of the article is twofold. Firstly, we establish the effectiveness of the classical Predictor–Corrector strategy. To our knowledge, such approach has never been applied to the model under investigation. In the first part, we determine the reliability of the proposed strategy by comparing the results with a collection of significant computational tests, starting from the simplest configuration to the more complicated (and more realistic) ones, with the numerical outputs obtained by different algorithms. Particular emphasis is laid on the Gutenberg–Richter statistical law, a classical empirical benchmark for seismic events. The second part is inspired by the result by Muratov (Phys Rev 59:3847–3857, 1999) providing evidence for the existence of traveling solutions for a corresponding continuum version of the Burridge–Knopoff model. In this direction, we aim to find some appropriate estimate for the crucial object describing the wave, namely its propagation speed. To this aim, motivated by LeVeque and Yee (J Comput Phys 86:187–210, 1990) (a paper dealing with the different topic of conservation laws), we apply a space-averaged quantity (which depends on time) for determining asymptotically an explicit numerical estimate for the velocity, which we decide to name LeVeque–Yee formula after the authors’ name of the original paper. As expected, for the Burridge–Knopoff, due to its inherent discontinuity of the process, it is not possible to attach to a single seismic event any specific propagation speed. More regularity is expected by performing some temporal averaging in the spirit of the Cesàro mean. In this direction, we observe the numerical evidence of the almost convergence of the wave speeds for the Burridge–Knopoff model of earthquakes.

Funder

Università degli Studi di Roma La Sapienza

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3