Gradient local auto-correlation features for depth human action recognition

Author:

Bulbul Mohammad FarhadORCID,Ali HazratORCID

Abstract

AbstractHuman action classification is a dynamic research topic in computer vision and has applications in video surveillance, human–computer interaction, and sign-language recognition. This paper aims to present an approach for the categorization of depth video oriented human action. In the approach, the enhanced motion and static history images are computed and a set of 2D auto-correlation gradient feature vectors is obtained from them to describe an action. Kernel-based Extreme Learning Machine is used with the extracted features to distinguish the diverse action types promisingly. The proposed approach is thoroughly assessed for the action datasets namely MSRAction3D, DHA, and UTD-MHAD. The approach achieves an accuracy of 97.44% for MSRAction3D, 99.13% for DHA, and 88.37% for UTD-MHAD. The experimental results and analysis demonstrate that the classification performance of the proposed method is considerable and surpasses the state-of-the-art human action classification methods. Besides, from the complexity analysis of the approach, it is turn out that our method is consistent for the real-time operation with low computational complexity.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3