Abstract
AbstractHuman action classification is a dynamic research topic in computer vision and has applications in video surveillance, human–computer interaction, and sign-language recognition. This paper aims to present an approach for the categorization of depth video oriented human action. In the approach, the enhanced motion and static history images are computed and a set of 2D auto-correlation gradient feature vectors is obtained from them to describe an action. Kernel-based Extreme Learning Machine is used with the extracted features to distinguish the diverse action types promisingly. The proposed approach is thoroughly assessed for the action datasets namely MSRAction3D, DHA, and UTD-MHAD. The approach achieves an accuracy of 97.44% for MSRAction3D, 99.13% for DHA, and 88.37% for UTD-MHAD. The experimental results and analysis demonstrate that the classification performance of the proposed method is considerable and surpasses the state-of-the-art human action classification methods. Besides, from the complexity analysis of the approach, it is turn out that our method is consistent for the real-time operation with low computational complexity.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献