Synthesis of TiO2 nanoparticles by chemical and green synthesis methods and their multifaceted properties

Author:

Aravind M.,Amalanathan M.ORCID,Mary M. Sony Michael

Abstract

AbstractIn this present work, Titanium dioxide nanoparticles (TiO2 NPs) successfully synthesized using the chemical as well as the green synthesis routine. The ethanol provoked the chemical reduction of ions. In the green synthesis, jasmine flower extract was used as a reducing and stabilizing agent because it contains alkaloids, coumarins, flavonoids. The Rutile phase of TiO2 NPs with an average crystalline size of 31–42 nm was revealed from the XRD pattern. From the UV–Visible spectroscopy, the optically active region of TiO2 NPs at 385 nm represents the visible region spectrum. The Ti–O–Ti and Ti–O vibration bond formation confirms the formation of TiO2 NPs. The SEM image of TiO2 NPs reveals that the spherical shaped NPs with randomly arranged manner. The obtained results have revealed that the property of TiO2 nanoparticles was similar in both processes. The Photodegradation of methylene blue dye was investigated and resulted in the maximum degradation efficiency of 92% is achieved at 120 min of irradiation. The Photodegradation study shows the biosynthesized TiO2 NPs exhibits a higher degradation efficiency compared to chemically synthesized TiO2 NPs. The antibacterial activity of prepared TiO2 NP’s was studied using grams-positive and gram-negative strains. The biological activities of green synthesized TiO2 NPs are enhanced compared to the chemically synthesized TiO2 NPs. Hence the degradation efficiency and zone inhibition layer indicate that the prepared TiO2 NPs are the potential candidate for environmental and biomedical applications. Graphic abstract

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3