GelMA hydrogel scaffold containing curcumin-loaded solid lipid nanoparticles promotes the regeneration of degenerative discs

Author:

Wang Ying,Xu Yidi,Shang Lijun,Mao Yingji

Abstract

AbstractIntervertebral disc degenerative disease (IDD), which usually causes lower back and neck pain, is one of the most widespread musculoskeletal disorders and often causes a low quality of life. However, the surgical and conservative treatments commonly used in clinical practice are not effective. Previous studies have identified curcumin (Cur) as a potential therapeutic agent. However, its development in this regard has been limited due to its low dissolution, instability in water, and rapid metabolism. In this study, we developed a novel anti-inflammatory composite hydrogel scaffold with curcumin encapsulated in solid lipid nanoparticles and mixed it with gelatin methacrylate (GelMA) hydrogel to treat IDD. The hydrogel scaffold, denoted Cur-solid lipid nanoparticles (SLNs)/GelMA, promoted the restoration of Collagen type II (Col II) and aggrecan expression levels in vivo, indicating that the regeneration of the intervertebral discs was effective. Combined in vitro studies showed that Cur-SLNs inhibited the expression of the inflammatory factors TNF-α and IL-6. Additionally, immunofluorescence and western blotting experiments verified that Cur-SLNs regulated the recovery of Col II and aggrecan in an inflammatory environment and promoted the metabolic homeostasis of the extramedullary cell matrix. In conclusion, this study provides a new strategy to promote IDD regeneration, which brings new application prospects.

Funder

512 Talents Development Project of Bengbu Medical College

Opening Project of Anhui Province Key Laboratory of Tissue Transplantation in Bengbu Medical College

Domestic Visiting and Training Program for Outstanding Young Backbone Teachers in High Schools

Scientific Research Foundation of Bengbu Medical College

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3