Exposure levels of radiofrequency magnetic fields and static magnetic fields in 1.5 and 3.0 T MRI units

Author:

Rathebe P.ORCID,Weyers C.,Raphela F.

Abstract

AbstractMagnetic resonance imaging (MRI) staff is exposed to a complex mixture of electromagnetic fields from MRI units. Exposure to these fields results in the development of transient exposure-related symptoms. This study aimed to investigate the exposure levels of radiofrequency (RF) magnetic fields and static magnetic fields (SMFs) from 1.5 and 3.0 T MRI scanners in two public hospitals in the Mangaung Metropolitan region, South Africa. The exposure levels of SMFs and RF magnetic fields were measured using the THM1176 3-Axis hall magnetometer and TM-196 3 Axis RF field strength meter, respectively. Measurements were collected at a distance of 1 m (m) and 2 m from the gantry for SMFs when the brain, cervical spine and extremities were scanned. Measurements for RF magnetic fields were collected at a distance of 1 m with an average scan duration of six minutes. Friedman’s test was used to compared exposure mean values from two 1.5 T scanners, and Wilcoxon test with Bonferroni adjustment was used to identify where the difference between exist. The Shapiro–Wilk test was also used to test for normality between exposure levels in 1.5 and 3.0 T scanners. The measured peak values for SMFs from the 3.0 T scanner at hospital A were 1300 milliTesla (mT) and 726 mT from 1.5 T scanner in hospital B. The difference in terms of SMFs exposure levels was observed between two 1.5 T scanners at a distance of 2 m. The difference between 1.5 T scanners at 1 m was also observed during repeated measurements when brain, cervical spine and extremities scans were performed. Scanners’ configurations, magnet type, clinical setting and location were identified as factors that could influence different propagation of SMFs between scanners of the same nominal B0. The RF pulse design, sequence setting flip-angle and scans performed influenced the measured RF magnetic fields. Three scanners were complaint with occupational exposure guidelines stipulated by the ICNIRP; however, peak levels that exist at 1 m could be managed through adoption of occupational health and safety programs.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3