Modeling and forecasting of rainfall reoccurrence changes using Markov Switching in Iran

Author:

Javari MajidORCID

Abstract

AbstractThis paper represents the recurrence (reoccurrence) changes in the rainfall series using Markov Switching models (MSM). The switching employs a dynamic pattern that allows a linear model to be combined with nonlinearity models a discrete structure. The result is the Markov Switching models (MSM) reoccurrence predicting technique. Markov Switching models (MSM) were employed to analyze rainfall reoccurrence with spatiotemporal regime probabilities. In this study, Markov Switching models (MSM) were used based on the simple exogenous probability frame by identifying a first-order Markov process for the regime probabilities. The Markov transition matrix and regime probabilities were used to analyze the rainfall reoccurrence in 167 synoptic and climatology stations. The analysis results show a low distribution from 0.0 to 0.2 (0–20%) per day spatially from selecting stations, probability mean of daily rainfall recurrence is 0.84, and a different distribution based on the second regime was found to be more remarkable to the rainfall variability. The rainfall reoccurrence in daily rainfall was estimated with relatively low variability and strong reoccurrence daily with ranged from 0.851 to 0.995 (85.1–99.5%) per day based on the spatial distribution. The variability analysis of rainfall in the intermediate and long variability and irregular variability patterns would be helpful for the rainfall variability for environmental planning.

Funder

Payame Noor University

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3