Enhanced adaptive neuro-fuzzy inference system using genetic algorithm: a case study in predicting electricity consumption

Author:

Oladipo Stephen,Sun Yanxia

Abstract

AbstractEnergy forecasting is crucial for efficient energy management and planning for future energy needs. Previous studies have employed hybrid modeling techniques, but insufficient attention has been given to hyper-parameter tuning and parameter selection. In this study, we present a hybrid model, which combines fuzzy c-means clustered adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm (GA), named GA–ANFIS–FCM, to model electricity consumption in Lagos districts, Nigeria. The model is simulated using the algorithms’ control settings, and the best model is identified after assessing their performance using renowned statistical indicators. To further narrow down the best viable model, the impact of the core parameter of the GA on the GA–ANFIS–FCM optimal model is examined by varying the crossover percentage in the range of 0.2–0.6. Firstly, the results reveal the better performance of the hybridized ANFIS model than the standalone ANFIS model. Additionally, the best model is obtained with the GA–ANFIS–FCM model with four clusters at a crossover percentage of 0.4, with mean absolute percentage error (MAPE), mean absolute error (MAE), coefficient of root mean square error (CVRMSE), root mean square error (RMSE) values of 7.6345 (signifying a forecast accuracy of 92.4%), 706.0547, 9.4913, and 918.6518 during the testing phase, respectively. The study demonstrates the potential of the proposed model as a reliable tool for energy forecasting.

Funder

South African National Research Foundation

South African National Research Foundation Incentive

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smart Sounding Table Using Adaptive Neuro-Fuzzy Inference System;Journal of Marine Science and Technology;2023-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3