Evaluation of the advanced artificial athlete and Hall effect sensors for measuring strain in multi-layer sports surfaces

Author:

Cole David,Fleming Paul,Morrison Kelly,Forrester Steph

Abstract

AbstractComputer models are a useful means to explore the loading behaviour of third generation (3G) artificial turf sports surfaces; however, measuring the material stress–strain behaviour under realistic high loading rates is challenging. Therefore, the purpose of this study was two-fold: to evaluate the advanced artificial athlete (AAA) for measuring strain behaviour of polymeric sports surfaces under high loading rates typical of player interactions; and to evaluate Hall effect sensors (HES) for measuring strain behaviour of an individual layer within multi-layer sports surfaces. An independent optical measurement system (GOM) provided gold standard sample deformation and strain. Forty-five impacts onto three test samples were measured simultaneously using the three systems. Poor agreement was found between AAA and GOM peak sample deformations and strain (systematic bias 2.4 mm, 95% confidence intervals ± 1.3 mm, strain RMSD 29%), largely attributable to errors in the AAA time of initial contact. Using a regression equation to correct this time led to much better agreement in AAA peak deformations and strain (systematic bias 0.1 mm, 95% confidence intervals ± 0.7 mm, strain RMSD 8%). Good agreement was found between the HES and GOM (systematic bias 0.2 mm, 95% confidence intervals ± 0.4 mm, strain RMSD 11%). The corrected AAA and HES methods can measure deformation of polymeric sports surfaces under realistic loading rates to an accuracy of < 1 mm. In terms of strain, errors increase with decreasing peak sample deformation indicating that both systems should be used with caution for peak deformations < ~ 4–5 mm.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Reference22 articles.

1. Fédération Internationale de Football Association (2015) FIFA quality concept for football turf. www.FIFA.com. Accessed 23 Feb 2019

2. Fleming P (2011) Artificial turf systems for sport surfaces: current knowledge and research needs. Proc Inst Mech Eng Part P J Sports Eng Technol 225:43–63

3. Fleming P, Ferrandino M, Forrester S (2016) Artificial turf field—a new build case study. Procedia Eng 147:836–841

4. Fédération Internationale de Football Association (2015) FIFA quality concept for football turf: handbook of requirements. www.FIFA.com. Accessed 23 Feb 2019

5. McMahon TA, Greene PR (1979) The influence of track compliance on running. J Biomech 12(12):893–904

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3